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Abstract. Motivated by recent experiments on cuprates with low-dimensional magnetic interactions, a
new class of two-dimensional Ising models with short-range interactions and mobile defects is introduced
and studied. The non-magnetic defects form lines, which, as temperature increases, first meander and then
become unstable. Using Monte Carlo simulations and analytical low- and high-temperature considerations,
the instability of the defect stripes is monitored for various microscopic and thermodynamic quantities in
detail for a minimal model, assuming some of the couplings to be indefinitely strong. The robustness of
the findings against weakening the interactions is discussed as well.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 74.72.Dn La-based cuprates –
75.10.Hk Classical spin models

1 Introduction

Low-dimensional magnetism in high-Tc superconductors
has attracted much interest, both theoretically and ex-
perimentally [1]. In particular, striped structures in mag-
nets derived from the La2CuO4 compound have been dis-
cussed rather extensively. Motivated by related analyses
and, more specifically, by recent experiments [2] on (Sr,
Ca, La)14Cu24O41, we shall introduce a novel class of quite
simple two-dimensional Ising models, mimicing Cu2+ ions
by spin-1/2 Ising variables and holes by non-magnetic de-
fects (S = 0). Of course, the aim of the present study is
not to offer a full, or partial explanation of the experi-
mental subtleties. Indeed, beyond the experimental moti-
vation, the model is hoped and believed to show various
intriguing properties being of genuine theoretical interest.

We consider the situation where the spins are arranged
in chains, with antiferromagnetic interactions, Ja, between
adjacent chains, and a ferromagnetic coupling, J , between
neighbouring spins in the chains, augmented by an anti-
ferromagnetic coupling, J0, between next-nearest spins in
the same chain with a defect in between them. The defects
are allowed to move through the crystal, along the chains.

The defects tend to form stripes, perpendicular to the
chains, which, for increasing temperature, first meander
and then become unstable. To identify the impact of the
defect mobility on the stripe instability, a ‘minimal model’
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is proposed by assuming indefinitely strong interactions in
the chains, J and J0. This model is studied analytically, at
low and high temperatures, and, for a wide range of tem-
peratures, by using standard Monte Carlo techniques [3].
Contact will be made to well known descriptions of wall
instabilities in two dimensions, as have been put forward,
for instance, in the context of incommensurate superstruc-
tures in two dimensions [4] and step roughening on vicinal
surfaces [5]. Deviations from these standard scenarios will
be discussed.

To study the robustness of the properties of the min-
imal model and to identify other possibly interesting as-
pects of this class of Ising models as well, we also consid-
ered cases with finite couplings in the chains. In addition,
both for the minimal model and the ‘full model’, the effect
of an external magnetic field has been investigated.

The paper is organized accordingly. In the next sec-
tion, we introduce the model and elucidate its experimen-
tal background. Then, we present our results on the min-
imal model, followed by a discussion on properties of the
full model. A short summary concludes the article.

2 Models and methods

We consider Ising models on a square lattice, setting
the lattice constant equal to one. Each lattice site (i, j)
is occupied either by a spin, Si,j = ±1, or by a defect
corresponding to spin zero, Si,j = 0. The defects are
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assumed to be mobile along one of the axes of the lattice,
which will be called the chain direction in the following.
Neighbouring sites of the same chain, (i, j) and (i ± 1, j),
are not allowed to be occupied both by defects (short range
repulsion between defects). The mobility of a defect may
be influenced by a pinning potential, which, however, will
be disregarded in most of the following analysis. Even
for vanishing pinning, the defect cannot diffuse freely,
in general, because an elementary move, characterized
by exchanging a defect and a, possibly flipped spin at
neighbouring sites, is affected by the magnetic interac-
tions along and perpendicular to the chain direction.
We assume a ferromagnetic coupling, J > 0, between
neighbouring spins, Si,j and Si±1,j , along the chain
augmented by an antiferromagnetic interaction, J0 < 0,
between those next-nearest spins of the same chain, which
are separated by a defect. Spins in adjacent chains, Si,j

and Si,j±1, are coupled antiferromagnetically, Ja < 0. Ac-
cordingly, the Hamiltonian of the model may be written as

H = −
∑
ij

(
JSi,jSi±1,j + J0Si,jSi±2,j

(
1 − S2

i±1,j

)

+ JaSi,jSi,j±1

) − H
∑
ij

Si,j (1)

where we included a field term. As a constraint on equa-
tion (1), we assume that the defects, Sij = 0, are sep-
arated, along the chains, by at least one spin. We shall
assume that the number of defects is the same in each
chain, determined by the defect concentration Θ, denoting
the total number of defects divided by the total number
of sites.

The model describes, among others, the thermal distri-
bution of defects, leading to rather intriguing properties,
as will be shown below. In particular, at low tempera-
tures, the defects tend to form stripes perpendicular to
the chains which become unstable at higher temperatures.
The model is believed to be of genuine theoretical interest.

The theoretical model may be motivated by rather
recent experimental findings for the so called telephone
number compound (Sr, Ca, La)14Cu24O41 which contains
two magnetically one-dimensional elements. One subsys-
tem is a sheet like arrangement of Cu2O3 two-leg lad-
ders, which is irrelevant in the context of the present pa-
per. The second subsystem is an array of CuO2 chains
formed by edge sharing CuO4 plaquettes. For this bond
geometry with a Cu-O-Cu bond angle close to 90 degree
the Goodenough-Kanamori-Anderson rules predict a fer-
romagnetic exchange between nearest neighbour Cu ions
with spin S = 1

2 . This is confirmed by neutron diffrac-
tion studies of the magnetic structure in the ordered state
which, in addition, show an antiferromagnetic coupling of
the spins perpendicular to the chains [6]. To our knowl-
edge the absolute value of the ferromagnetic coupling con-
stant J in the undoped chains has not been determined
yet from inelastic neutron data. A mean field treatment
of the magnetic susceptibility suggests a coupling constant
of several meV [2,7].

A long range magnetic order of the Cu spins is only
observed for certain compositions of the telephone num-
ber compound. For many compositions the chains con-
tain a large number of hole-like charge carriers. These
holes imply non-magnetic Cu sites [7–9] which inhibit the
formation of a long range ordered magnetic state. For
example, in the stoichiometric compound Sr14Cu24O41

about 60 percent of the Cu sites in the chains are non-
magnetic [10–12] and the remaining spins form nearly in-
dependent dimers [8,11]. The analysis of this dimer state
shows a rather large antiferromagnetic coupling |J0| �
11 meV between the two Cu spins adjacent to a non-
magnetic Cu site [8,11,13]. This coupling is about one
order of magnitude larger than the antiferromagnetic cou-
pling between Cu ions in adjacent chains [11].

The experimental data mentioned so far yield at least
three relevant magnetic coupling constants in the tele-
phone number compounds: a ferromagnetic coupling J of
several meV between nearest neighbour Cu ions in the
chain, the antiferromagnetic |J0| � 11 meV for Cu spins
adjacent to holes [13] and an antiferromagnetic coupling
Ja between Cu spins in adjacent chains which is of the or-
der of 1 meV [11]. For undoped chains the magnetic prop-
erties depend mainly on J and Ja, whereas the behaviour
for large hole content is determined by a single coupling
constant, the antiferromagnetic exchange J0. For small
hole concentrations all three magnetic interactions and
their interplay should be relevant. Experimentally such
a situation is realized in La5Ca9Cu24O41 where the hole
content in the chains amounts to about 10 percent [12].
Studies of this compound reveal a very unusual suppres-
sion of the magnetic order in external fields which can not
be explained in terms of conventional spin models [2]. It
is tempting to attribute this strange behaviour to a mag-
netic field induced movement of the charge carriers which
frustrates the antiferromagnetic interchain coupling.

As will be shown below our numerical results for the
model equation (1) indeed reveal a movement of holes in
external fields. We mention that the treatment within an
Ising model is also related to experimental findings for
the telephone number compound. Different experimen-
tal data for lightly doped chains show a strong Ising-like
anisotropy [2,14] which was predicted by two independent
theoretical treatments for spin chains formed by edge shar-
ing CuO4 plaquettes [15].

To study the above Ising model with mobile defects,
equation (1), we applied analytical low and high tempera-
ture considerations, and Monte Carlo techniques monitor-
ing various thermodynamic and microscopic properties. In
the simulations, we took into account flips of single spins
as well as hops of a defect to a neighbouring site in the
chain leaving a spin at the former defect site. Of course,
simulations are performed on finite lattices with L × M
sites (L refers to the chain direction). Usually, we em-
ployed full periodic boundary conditions. In a few selected
cases free boundary conditions perpendicular to the chain
direction were applied, corroborating the results for peri-
odic boundary conditions to be presented in the following.
To investigate finite size effects, the linear dimensions, L
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and M , were varied from 20 to 160. Typically, runs of at
least 106 Monte Carlo steps per spin were performed, av-
eraging then over a few of such realizations to estimate
error bars. The concentration of defects, Θ, ranged from
zero to 15 percent. In most cases, we set Θ = 0.1.

Physical quantities of interest include the specific
heat, C, determined from energy fluctuations and the
temperature dependence of the energy, the magnetiza-
tion per site, m, and the correlation functions paral-
lel, G1(r) = (

∑
ij

〈Si,jSi+r,j〉)/LM , and perpendicular,

G2(r) = (
∑
ij

〈Si,jSi,j+r〉)/LM , to the chain direction. We

also calculated other microscopic quantities describing the
stability of the defect stripes and the ordering of the spins
and defects in the chains. In particular, we computed
the average minimal distance, dm, between each defect
in chain j, at position (i, j), and those in the next chain,
at (i′, j+1) (i.e.

∑〈min |i−i′|〉, dividing this sum over the
defects by their number), the cluster distribution, nd(l),
denoting the probability of a cluster with l spins of equal
sign in a chain (in analogy to the distribution of cluster
lengths in percolation theory [16]), and the normalized
number of sign changes of neighbouring spins, nc, in the
chains. Finally, it turned out to be quite useful to visualize
the microscopic spin and defect configurations as encoun-
tered during the simulation.

In case of the magnets mentioned above, the absolute
values of both J0 and J are large compared to the cou-
pling between chains, Ja. To describe then the behaviour
of the Hamiltonian, equation (1), at low temperatures one
may consider a simplified model in which the spins form
intact clusters in the chains between two consecutive de-
fects changing the sign at the defect, i.e. J and |J0| are
assumed to be indefinitely strong. Quantities can now be
expressed in terms of kBT/|Ja|. The thermal excitations
are due to motion of the defects in the chains. Again, de-
fects are separated by at least one spin. The analysis of
this ‘minimal model’ will be presented in the next section.

3 Properties of the minimal model

3.1 Monte Carlo results

In the ground state of the minimal model with vanishing
external field, H = 0, the defects form straight lines per-
pendicular to the chains and separating antiferromagnetic
domains of spins. The ground state is highly degenerate,
with the degeneracy depending on the concentration Θ of
defects. Each arrangement of straight defect lines, with a
separation distance between the lines of at least two lattice
spacings, has the same, lowest possible energy, resulting in
a fast decay of the correlations G1 parallel to the chains,
while the spins are perfectly correlated perpendicular to
the chains. The degeneracy may be (partly) lifted, for in-
stance, by introducing a pinning potential or by applying
an external field as will be discussed briefly below.

Increasing the temperature, T > 0, the defects are al-
lowed to move so that the stripes start to meander and

finally break up, as exemplified in typical Monte Carlo
configurations depicted in Figure 1. It seems plausible that
the destruction of the defect stripes by thermal fluctua-
tions is accompanied by singular behaviour of thermody-
namic quantities, like the specific heat, and various corre-
lations functions. This suggestion is, indeed, supported by
the numerical evidence discussed below. The effect of both
phenomena, meandering and breaking up of the stripes, on
various physical quantities are shown in Figures 2 to 6, for
the case Θ = 0.1. Note that in most of the figures we did
not include error bars being, typically, not larger than the
size of the symbols.

At low temperatures, deviations from the straight
stripes may be characterised by kinks and kink-antikink
pairs [4,5,18,19]. Actually, the minimal model resembles
closely a terrace-step-kink (TSK) model describing step
fluctuations on vicinal surfaces. The energies of the el-
ementary excitations may be readily calculated. For in-
stance, a kink with depth of one lattice spacing costs −Ja,
a kink-antikink pair, created by moving a single defect by
one site away from the perfect stripe, costs −2Ja, for a
further diffusion of that defect by another lattice spacing
away from the stripe an additional −4Ja is needed, etc.
The fact that consecutive defects in a chain cannot be
closer than the minimum distance of two lattice spacings
leads to the well known phenomenon of ‘entropic repul-
sion’ [17,18] between meandering neighbour stripes. Due
to the entropic repulsion, the meandering stripes tend to
approach their average distance as given by the concentra-
tion of defects, Θ (here, at Θ = 0.1, the average distance is
ten lattice spacings). This feature is seen, e.g., in the ther-
mal behaviour of the cluster distribution, nd(l), where the
distance between two neighbouring defects in a chain is, in
the minimal model, equal to (l +1). As shown in Figure 2
for the moderate size L = M = 40, at zero temperature,
nd(l), calculated numerically by taking into account all de-
generate ground states, decreases monotonically with the
separation distance l. When turning on the temperature,
the maximum of nd(l) moves towards equidistant spacing
of defects, here l = 9, and the shape of nd(l) may be ap-
proximated by a Gaussian or Wigner function, as has been
discussed recently in the context of terrace width distribu-
tions for vicinal surfaces [20]. Increasing the temperature
furthermore, T −→ ∞, the defects take random positions
in the chains, and nd(l) acquires, of course, again the same
Poissonian form as at T = 0 for random distribution of
defect lines. The destabilization of the stripes is indicated,
for example, by a rather rapid decrease, with temperature,
of the probability to find defects at their average spacing,
i.e. nd(l = 9) for Θ = 0.1, see Figure 5.

As depicted in Figure 3, meandering and breaking up
of the stripes may be also observed in the correlation func-
tion parallel to the chains, G1(r). Again, the behaviour at
zero temperature has been determined numerically with-
out difficulty, for fairly small system sizes, by averag-
ing over all ground states. The correlations are seen to
decay rapidly. The oscillations in G1(r), already hardly
visible for L = 60, as shown in Figure 3, become less
and less pronounced when enlarging L at fixed Θ(= 0.1).



86 The European Physical Journal B

(a) (b)

(c)

Fig. 1. Typical Monte Carlo equilibrium configurations of the minimal model, Θ = 0.1 and H = 0, of size L = M = 40 at
temperatures kBT/|Ja| = 0.6 (a), 2.6 (b), and 4.0 (c).
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Fig. 2. Cluster distribution nd(l) at kBT/|Ja| = 0 (circles),
0.5 (squares), 1.0 (diamonds), 1.5 (triangles up), 2.5 (triangles
left), and 4.0 (triangles down), for the minimal model, Θ = 0.1,
and H = 0, of size L = M = 40. Results have been obtained
by exact enumerations at zero temperature, and by simulations
otherwise.

Fig. 3. Parallel correlation function G1(r) at kBT/|Ja| = 0
(circles), 0.5 (squares), 1.0 (diamonds), 1.5 (triangles up),
2.0 (triangles left), and 2.5 (triangles down), for the minimal
model of size L = M = 60, as obtained from exact enumera-
tion, T = 0, and simulations otherwise.

The asymptotics of G1(r), for large L, may be determined
analytically, as discussed in the following subsection. Rais-
ing now the temperature, T > 0, the correlations first
become stronger, reflecting the ordering tendency which
favour equidistant stripes due to the entropic repulsion,
and then decrease quite drastically due to the thermal
destabilization of the stripes. In fact, the perpendicular
correlations, G2, fall off rather rapidly in the same range
of temperatures. Finally, when T −→ ∞, one encounters
again the behaviour at zero temperature, with the defects
at random positions.

Fig. 4. Distance between defects in adjacent rows dm(T ), sim-
ulating the minimal model of size L = M = 20 (circles),
40 (squares), 60 (diamonds) and 80 (triangles up).

The destruction of the defect stripes is detected di-
rectly in the average minimal distance between defects
in adjacent chains, dm. Obviously, dm is equal to zero at
T = 0, and dm ≈ 2 exp(−|Ja|/kBT ) at low temperatures,
kBT � |Ja|. In Figure 4, data for various system sizes,
L = M ranging from 20 to 80, are displayed. While at
low temperatures, dm(T ) does not depend, in fact, sig-
nificantly on the system size, it starts to rise rapidly at
some characteristic temperature, with the height of the
maximum in the temperature derivative of dm increasing
strongly with larger system size. The location of the max-
imum, at T max

d , signalling the breaking up of the stripes,
moves to lower temperatures as L gets larger. The quanti-
tative behaviour is quite similar to the one of the specific
heat, to be discussed below.

One possible reason for the destabilization of the
stripes are effectively attractive interactions between
neighbouring defects or lines, mediated by the spins. In-
deed, such an interaction may occur, for instance, for
strongly fluctuating stripes so that three consecutive de-
fects in one chain, j, are in the cage of four defects formed
by two pairs of defects, separated by spins of the same
sign, in the two adjacent chains, j ± 1. Consequently, two
of the three defects tend to form a pair of next-nearest
neighbouring defects, as may be checked easily. In any
event, the probability of such pairs of defects is obviously
given by nd(l = 1). Its temperature and size dependence
is depicted in Figure 5 (together with that of nd(l = 9),
as mentioned above), showing a drastic increase close to
the characteristic temperature of the breaking up of the
stripes, T max

d . Note that this type of stripe instability is
not included in the standard descriptions of wall instabil-
ities in two dimensions [4,5,18,21], where either the num-
ber of walls is not fixed, giving rise to incommensurate
structures, or dislocations play a crucial role, in the con-
text of melting of crystals. Also the bunching of steps in
TSK models with attractive step-step interactions [22] or
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Fig. 5. Temperature and size dependence of probability for
next-nearest neighbour pairs of defects, nd(l = 1) (open sym-
bols) and pairs at average distance nd(l = 9) (full symbols),
simulating systems of size L = M = 20 (circles), 40 (squares),
and 60 (diamonds).

instabilities in polymer filaments due to attractive cou-
plings [23,24] are quite different from the loss of stripe
coherency we observe here. Of course, the breaking up of
the stripes has to be distinguished from their meandering
which may result in their roughness, driven by capillary
wave excitations [5].

Meandering and destabilization of the stripes also
show up in the specific heat, C, see Figure 6 for systems
with L = M sites, L ranging from 20 to 80. For each size,
C exhibits two maxima. The maximum at the lower tem-
perature is almost independent of the system size, and it is
related to the kink excitations of the stripes. The interpre-
tation is backed up by our simulations of the correspond-
ing TSK model with the kink energy −Ja, non-crossing
steps, and no further step-step interactions [19,20]. The
specific heat of the TSK model exhibits a single maximum
which is almost independent of the size of the system. In
the minimal model, the corresponding maximum in C is
somewhat weaker occuring at a slightly lower temperature
because excitations of kinks with depth of more than one
lattice spacing cost more energy than in this TSK model,
as mentioned above. The upper maximum, occurring at
T max

C (L), signals the instability of the defect stripes,
showing up at the temperature where, for instance, dm

increases strongly. Its height increases with increasing sys-
tem size, indicating possibly a phase transition in the ther-
modynamic limit, L −→ ∞. To estimate the transition
temperature, we plotted T max

C versus 1/L, with L going
up to 160, see Figure 7. From a linear extrapolation we
obtain approximately kBT max

C (L = ∞)/|Ja| = 1.05±0.05.
Note that finite size analyses, usually for sizes up to 80,
for other quantities, like G1, G2, and nd(l = 9), lead
to similar estimates for the possible transition tempera-
ture. However, the close agreement may be fortuituous,
depending on the type of the transition. For instance, for

Fig. 6. Specific heat, C, for systems of size L = M = 20 (cir-
cles), 40 (squares), and 80 (diamonds).

Fig. 7. Size dependence of the location of the maximum in
the specific heat, T max

C (L), as obtained from simulations of
the minimal model, Θ = 0.1 and H = 0, for L = M = 20, 40,
60, 80, 100, and 160.

a Kosterlitz-Thouless transition, the peak in the specific
heat does not occur exactly at the transition temperature,
as L −→ ∞. A detailed analysis of this subtle feature is,
however, beyond the scope of the present study.

From simulations of the minimal model with Θ = 0.05
and Θ = 0.15, L = M = 40, we infer that the character-
istic temperature, at which the stripes become unstable,
gets smaller when the concentration of defects, Θ, is in-
creased. This observation may be explained by the fact
that the effectively attractive interactions, caused, for in-
stance, by the cage effect described above, may set in ob-
viously at lower temperature when the average distance
between the stripes decreases.

Applying an external field, H > 0, the ground states
change when H exceeds specific critical values. For |2Ja| >
H > |Ja|, the stripes are no longer straight, but they form
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a zig-zag structure. In that structure, supposing the field
favours the ‘+’ spins, each ‘+’ cluster comprises two more
spins than the ‘−’ clusters directly below and above that
cluster in the two adjacent chains. Defects bounding these
‘−’ clusters are located exactly below and above the first
and last spins of the ‘+’ cluster. Spins and defects in each
second chain are arranged identically. Obviously, the zig-
zag structures carry a non-vanishing net magnetization.
The degeneracy of the ground state is still high, albeit
somewhat smaller than in the case of straight stripes at
H < |Ja|, because the minimum length of ‘+’ clusters is
now three, instead of one. For larger fields, H > 2|Ja|, the
‘−’ clusters shrink drastically: ‘−’ spins occur only in the
pairs of next-nearest neighbouring defects; all other spins
point in the direction of the external field.

Monitoring various quantities at fixed defect concen-
tration, Θ = 0.1, the stripes are observed to become un-
stable at lower temperatures for stronger fields, 0 < H <
2|Ja|. Varying the field at fixed small temperature, for the
same defect concentration, we found, that the destruction
of the stripes seems to be accompanied by a fairly rapid
increase in the magnetization, m, leading to an anomaly in
the field derivative of the magnetization, similar to exper-
imental findings on (Sr, Ca, La)14Cu24O41 [2]. The change
from straight to zig-zag stripes, on the other hand, leads to
a jump in m(H) at H = |Ja| and T = 0. The correspond-
ing maximum in the field derivative of the magnetization
is, however, extremely weak already at very low temper-
atures. More detailed investigations are needed to clarify
the experimental relevance of these observations. They are
beyond our present scope.

The high degeneracy of the ground states may be lifted
by introducing a pinning potential. For example, in re-
lated simulations for H = 0, we found that meandering
and breaking up of the stripes seem to be qualitatively
not affected by a weak one-dimensional, along the chain
direction, harmonic regular pinning potential.

3.2 Analytical results

Here we derive the asymptotics of the spin correlation
functions in the chains, G1(r) = 〈Si,jSi+r,j〉, for suffi-
ciently large distances r, first at zero temperature, also
valid at infinite temperature, and then at non-vanishing,
but small temperatures. We start with the obvious state-
ment that

Si,jSi+r,j = (−1)n0(i,i+r) (2)

where n0(i, i+r) is the number of defects or ‘zeros’, in the
interval (i, i + r). Equation (2) can be rewritten as

Si,jSi+r,j =
(
eiπn0(i,i+r) + e−iπn0(i,i+r)

)
/2. (3)

Note that n0 has fluctuating values in the free fermion ap-
proach used below. Assuming that 〈n0(i, i+ r)〉 = n̄0(r) is
sufficiently large, we apply the Gaussian statistics to the

deviation δn0(r) = n0(i, i + r) − n̄0(r). Thus, the asymp-
totic expression of the correlation function reads

G1(r) ≈ cosπn̄0(r) exp
(
−π2

2
〈
(δn0(r))2

〉)
. (4)

The average n̄0(r) is related to the concentration of
zeros c0 = Θ by n̄0(r) = c0r. Due to the independence of
different sites, one can calculate 〈(δn0(r))

2〉 at one site,
r = 0, and then multiply it by r. The average 〈n2

0〉, at one
site, is equal to 〈n0〉, since n0 and n2

0 simultaneously take
the same values 0 and 1. Both are equal to c0. Thus one
readily obtains

〈
(n0 − n̄0(r))2

〉
= rc0(1 − c0). (5)

Plugging this expression into equation (4), we ob-
tain the asymptotics of G1(r) = 〈Si,jSi+r,j〉 at zero
temperature

G1(r, T = 0) ≈ cos(πc0r) exp
(
−π2

2
c0(1 − c0)r

)
. (6)

The asymptotics is valid for r � rc, with the correla-
tion length rc = 2/(π2c0(1− c0)). The condition of having
a minimal distance of q + 1 spacings between consecu-
tive defects can be taken into account by replacing c(0) by
c(0)/(1 − c(0)q). For our model q = 1.

Note that the above considerations hold also in the
high-temperature limit, T −→ ∞, as mentioned before.

At finite, but small temperatures, kBT � |Ja|,
the long-distance asymptotics of the correlation function
G1(r) changes dramatically due to the meandering of the
defect stripes. This process may be described by the free-
fermion approximation [4]. In this approach the lines are
represented as trajectories of free fermions. Their entropic
repulsion is treated as statistical repulsion of the fermions.
The meandering of the lines means that, going from one
moment of discrete time to the next one, each fermion can
move to the left or right by one site with the amplitude
(or probability) z = exp(−2|Ja|/kBT ). These processes
are described by the Hamiltonian

H = −z
∑

i

(
a+

i+1ai + a+
i ai+1

)
(7)

where the fermion operators ai and a+
i obey cyclic bound-

ary conditions a
(+)
i+L= a

(+)
i . The Hamiltonian is diagonal-

ized by Fourier transformation

H = −2z
∑

p

(cos p)α+
p αp;

p = 2πm/L(m = 1, 2, ...L) (8)

where

ak =
∑

p

eipkαp/
√

L. (9)

The energy band in p-space extends from −π to π, but
it is filled only partly, from −pF to pF , where pF = πc0 (to
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take into account the specific minimal distance between
defects, c0 has to be substituted here and in the following
as before). It means that in the ground state 〈α+

p αp〉 = 1
for |p| = pF , and 〈α+

p αp〉= 0 for pF < |p| < π. In this
approach the number of zeros between i and i+ r is given
in terms of the fermion operators by

n0(i, i + r) =
i+r∑
k=i

a+
k ak. (10)

The average of this quantity is obviously equal to rc0, as
at zero temperature, but its variance, 〈δn2〉 = 〈(n0(r) −
n̄0(r))2〉, is drastically different. Indeed,

〈
δn2

〉
=

i+r∑
k,k′=i

〈
: a+

k ak :: a+
k′ak′ :

〉
(11)

where :XY : denotes the normal product of the operators
X and Y . Applying the Wick theorem, one obtains

〈
δn2

〉
=

i+r∑
k,k′=i

〈
a+

k a′
k

〉 〈
aka+

k′
〉

(12)

with the same summation limits. The diagonal term of
this sum, k = k′, gives the contribution rc0(1 − c0), as at
zero temperature. However, it will be completely compen-
sated by the non-diagonal terms. Indeed, the simultaneous
correlation function for free fermions is known [25] to be
equal to

〈
aka+

k′
〉

= sin(pF (k − k′))/(π(k − k′)). (13)

It is easy to check that 〈aka+
k′〉 = −〈a+

k ak′〉. In the
limit of small pF , the summation in equation (12) can be
replaced by an integration, which can be explicitly per-
formed without difficulty under the additional condition
pF r � 1, giving

〈
δn2

〉
nondiag

= −pF r/π + (ln r)/4π2. (14)

The first term compensates the diagonal contribu-
tion. Thus, at 0 < kBT � |Ja|, the correlation function
G1(r) = 〈Si,jSi+r,j〉 is finally approximated as

G1(r) ≈ cos(πc0r)/
√

r. (15)

Note that the expression holds for small concentration,
as stated after equation (13). Of course, the algebraic de-
cay of the correlations is in accordance with previous find-
ings on free fermions in two dimensions [4,5,18]. Formally,
there is no continuous change from the exponential de-
cay of the correlations, at T = 0, to the algebraic decay
at non-vanishing temperatures. However, the final expres-
sion, equation (15), is valid only for a system whose size,
L, perpendicular to the stripes exceeds the collision length
of the fermions, lcoll = 1/(zc2

0), which goes to infinity as
T −→ 0. At a fixed value of L, there exists a crossover
temperature Tcr ≈ |Ja|/ ln(Lc2

0) at which the exponen-
tial decay of the correlations goes over into an algebraic

one. Note that the size, L � 1/(zc2
0), is rather large at

the concentration we mostly considered in the simulations,
c0 = Θ = 0.1, and the crossover effect plays no role there.
However, such sizes are not big in experimental systems.

At large temperatures, the correlations G1 are believed
to decay exponentially, see equation (6) which also holds
at infinite temperature. Thence one expects a transition
from algebraic decay at low temperatures to an exponen-
tial decay at high temperatures. A similar change may
occur in G2 (being constant at zero temperature). How-
ever, analytical calculations have not yet been performed.
In the simulations, the stripe instability is indicated by a
rapid decrease in G1(r) as well as G2(r) at large distance,
say, for lattices of linear dimension L = M , r ≈ L/2,
when increasing the temperature and passing the transi-
tion point.

4 Beyond the minimal model

In the following, we shall present results on the full
model, equation (1), with finite ferromagnetic couplings,
J , between neighbouring spins in a chain and antiferro-
magnetic couplings, J0, between next-nearest spins in a
chain separated by a defect. In the simulations we choose
J0/J = −6.25 and Ja/J ranging from zero to minus one.
This choice is, again, motivated by the experimental find-
ings mentioned above.

At zero temperature and small fields, one obtains the
same highly degenerate ground states of perfectly straight
or zig-zag stripes as in the minimal model. Likewise, the
behaviour at low temperatures and H < 2|Ja| is charac-
terised by the meandering of the stripes as in the minimal
model, followed by the stripe instability at higher tem-
peratures. However, the instability may be masked, for
instance, in the specific heat at Ja/J = −0.3, Θ = 0.1,
and H = 0, for systems of sizes up to L = 80, as depicted
in Figure 8 and to be discussed in the following.

In this case, in addition to the weak, almost size-
independent maximum at low temperatures due to stripe
meandering, the specific heat displays a rather pronounced
peak at higher temperatures being much stronger than
the one in the minimal model. The peak, however, gets
smaller when the system size increases. Indeed, it is non-
critical, stemming from energy fluctuations by breaking
bonds, J , between spins in the chains. It persists when
setting Ja = 0, i.e. in the one-dimensional limit exhibit-
ing, of course, no phase transition at all. In that limit,
the lower maximum in C disappears, because there are no
stripes. Actually, the defects and their mobility play an
important role in breaking the bonds between spins in the
chains. For instance, when a defect moves next to a flipped
spin, the spin on the other side of the defect will be flipped
rather easily, costing an energy of 2J in the ferromagnetic
coupling. In contrast, away from defects, an energy of 4J
is needed to create the elementary excitation comprising
a pair of neighbouring spins with opposite signs.

We also analysed, for the case depicted in Figure 8, the
simulational data for the spin correlations, G1 and G2,
the cluster distribution, nd(l), and the average distance
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Fig. 8. Specific heat, C, of the full model, equation (1), at
Ja/J = −0.3, H = 0, and Θ = 0.1, as obtained from simula-
tions for systems of size L = M = 20 (circles), 40 (squares),
and 80 (diamonds).

between defects in adjacent chains, dm. The data provide
strong evidence that the defect stripes become unstable
at about the same temperature, measured in kBT/|Ja|,
as in the minimal model. Thence the impact of the spin
flips on the location of the stripe instability seems to be
rather small for this choice of parameters. In principle, the
spin flips may lead to new mechanisms, different from the
effectively attractive interactions between the defects dis-
cussed for the minimal model, to destruct the coherency
of the stripes. To detect the stripe instability in the spe-
cific heat at Ja/J = −0.3, presumably significantly larger
systems have to be simulated. As shown in Figure 8, e.g.,
for L = M = 80 merely a shoulder in C starts to develop,
at about the temperature where the minimal model shows
a peak in C, compare with Figure 6. Note that very long
runs, especially for large systems, are needed to get suffi-
ciently good statistics for the Monte Carlo data.

Applying a magnetic field, H > 0, the breaking up of
the stripes is found to shift to lower temperatures, as in
the minimal model.

When choosing a smaller, but non-vanishing ratio of
−Ja/J , one gets closer to the minimal model. We did sim-
ulations for Ja/J = −0.1. In fact, there the instability of
the defect stripes is also indicated by a maximum in the
specific heat, as in the minimal model, already for rather
small systems, e.g., L = 40, followed by the large non-
critical peak due to the spin flips in the chains.

On the other hand, when weakening J with respect
to Ja, the stripe instability, as indicated by the rapid
increase of the minimal distance dm, may occur quite
close to the pronounced, non-critical maximum in C be-
ing due to the spin flips in the chains. In particular, for
Ja/J = −0.5 and, especially, −1.0, one then observes
another clearly visible maximum nearby the non-critical
peak in C already for small and moderate system sizes, e.g.
for L = 40, due to the stripe instability. The location of

Fig. 9. Cluster distribution, nd(l = 1), in the full model, equa-
tion (1), at H= 0, Θ = 0.1,and Ja/J = −0.1 (circles), −0.3
(squares), −0.5 (diamonds), and −1.0 (triangles), as obtained
from simulations for systems of size L = M = 40, see Figure 2.

the instability, measured in units of kBT/J , increases with
increasing ratio −Ja/J . Interestingly enough, near the in-
stability, the probability of finding pairs of next-nearest
neighbouring defects, nd(l = 1), now does not show any
longer the overshooting phenomenon, compared to com-
plete disorder at T −→ ∞, in contrast to the situation in
the minimal model and for small ratios Ja/J , see Figure 9.
The stripes become unstable at temperatures of the order
of the ferromagnetic spin coupling J , and then the ten-
dency to form pairs of next-nearest neighbouring defects
is diminished by thermal disordering.

5 Summary

In this paper a two-dimensional Ising model with defects
being mobile along the chain direction has been intro-
duced. Albeit the model has been motivated by recent
experiments on cuprates with low dimensional magnetic
interactions, the model is believed to be of genuine theo-
retical interest as well.

In particular, based on analytical, asymptotical consid-
erations at low and high temperatures as well as on Monte
Carlo techniques, the model is found to describe formation
of defect stripes, their thermal meandering and, at higher
temperatures, their destabilization.

The meandering and the instability of the stripes is
discussed in the framework of a minimal model, assum-
ing infinitely strong couplings between the spins along the
chains. The instability is signaled by pronounced anoma-
lies in spin correlation functions, in the spin cluster dis-
tribution along the chain, in the specific heat, and in the
minimum distance between defects in neighbouring chains.
The breaking up of the stripes seems to be caused by an
effectively attractive interaction between the defects me-
diated by the spins.
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The main features of the stripe instability persist when
replacing the infinite couplings by, presumably, experi-
mentally more realistic values. However, the anomaly in
the specific may be masked for rather small systems, and
thermal disordering and spin flips may also reduce the
pairing tendency of the defects.

New experimental data on a stripe instability in (Sr,
Ca, La)14Cu24O41, together with a more detailed discus-
sion on possible theoretical interpretations, will be pre-
sented elsewhere.
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Kroll, A. Revcolevschi, to be published

3. D.P. Landau, K. Binder, A Guide to Monte Carlo Simula-
tions in Statistical Physics (Cambridge, University Press,
2000)

4. V.L. Pokrovsky, A.L. Talapov, Phys. Rev. Lett. 42, 65
(1979)

5. J. Villain, D.R. Grempel, J. Lapujoulade, J. Phys. F 15,
809 (1985)

6. M. Matsuda, K.M. Kojima, Y.J. Uemura, J.L. Zarestky,
K. Nakajima, K. Kakurai, T. Yokoo, S.M. Shapiro, G.
Shirane, Phys. Rev. B 57, 11467 (1998)

7. S.A. Carter, B. Batlogg, R.J. Cava, J.J. Krajewski, W.F.
Peck, Jr., T.M. Rice, Phys. Rev. Lett. 77, 1378 (1996)
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12. N. Nücker, M. Merz, C.A. Kuntscher, S. Gerhold, S.
Schuppler, R. Neudert, M.S. Golden, J. Fink, D. Schild,
S. Stadler, V. Chakarian, J. Freeland, Y.U. Idzerda, K.
Conder, M. Uehara, T. Nagata, J. Goto, J. Akimitsu,
N. Motoyama, H. Eisaki, S. Uchida, U. Ammerahl, A.
Revcolevschi, Phys. Rev. B 62, 14384 (2000)

13. The experimental data do not exhibit signatures of a large
antiferromagnetic coupling between next nearest Cu ions
for chains without holes suggesting that the holes are cru-
cial for the size of J0 as will be shown and discussed in a
forthcoming publication

14. V. Kataev, K.-Y. Choi, U. Ammerahl, B. Büchner, M.
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